科學(xué)家研發(fā)出電腦法官 斷案準(zhǔn)確率達(dá)79%

            雕龍文庫 分享 時間: 收藏本文

            科學(xué)家研發(fā)出電腦法官 斷案準(zhǔn)確率達(dá)79%

            倫敦大學(xué)學(xué)院、謝菲爾德大學(xué)的最新研究表明,人工智能已經(jīng)可以分析法律證據(jù)與道德問題,進(jìn)而預(yù)測審訊結(jié)果,準(zhǔn)確率高達(dá)79%。

            A computer 'judge' has been developed which can correctly predict verdicts of the European Court of Human Rights with 79 percent accuracy.

            科學(xué)家們研發(fā)出一臺電腦“法官”,它可以正確預(yù)測歐洲人權(quán)法庭的判決結(jié)果,準(zhǔn)確率達(dá)79%。

            Computer scientists at University College London and the University of Sheffield developed an algorithm which can not only weigh up legal evidence, but also moral considerations.

            倫敦大學(xué)學(xué)院和謝菲爾德大學(xué)的計算機(jī)科學(xué)家開發(fā)了一套算法,該算法不僅可以評估法律證據(jù),還能權(quán)衡道德考量。

            As early as the 1960s experts predicted that computers would one day be able to predict the outcomes of judicial decisions.

            早在20世紀(jì)60年代,專家們就預(yù)言有一天電腦將能夠預(yù)測司法判決的結(jié)果。

            But the new method is the first to predict the outcomes of court cases by automatically analysing case text using a machine learning algorithm.

            但是,這一新途徑是首次通過機(jī)器學(xué)習(xí)算法自動分析案件文本,來預(yù)測法庭判決結(jié)果。

            "We don't see AI replacing judges or lawyers, but we think they'd find it useful for rapidly identifying patterns in cases that lead to certain outcomes," said Dr Nikolaos Aletras, who led the study at UCL Computer Science.

            該研究的領(lǐng)頭人、倫敦大學(xué)學(xué)院計算機(jī)科學(xué)專業(yè)的尼古勞斯?阿爾特拉斯博士說:“我們不認(rèn)為人工智能取代了法官或律師,但是我們認(rèn)為電腦在快速識別案件模式從而分析出特定結(jié)果這方面,對法官律師會有幫助?!?/p>

            "It could also be a valuable tool for highlighting which cases are most likely to be violations of the European Convention on Human Rights."

            “電腦法官還能提示哪些案件最有可能違反《歐洲人權(quán)公約》,在這方面它將是個很有價值的工具?!?/p>

            To develop the algorithm, the team allowed an artificially intelligent computer to scan the published judgements from 584 cases relating to torture and degrading treatment, fair trials and privacy.

            為了開發(fā)這個算法,該團(tuán)隊讓人工智能電腦掃描了584例已公布的審判結(jié)果,這些案件都是關(guān)于虐待、侮辱、公正性和隱私的案件。

            The computer learned that certain phrases, facts, or circumstances occurred more frequently when there was a violation of the human rights act. After analysing hundreds of cases the computer was able to predict a verdict with 79 percent accuracy.

            這臺計算機(jī)學(xué)習(xí)特定措辭、事實或者違反人權(quán)法案件中常出現(xiàn)的情形。在分析過數(shù)百起案例后,計算機(jī)預(yù)測一次判決的準(zhǔn)確率達(dá)79%。

            "Previous studies have predicted outcomes based on the nature of the crime, or the policy position of each judge, so this is the first time judgements have been predicted using analysis of text prepared by the court," said co-author, Dr Vasileios Lampos, UCL Computer Science.

            倫敦大學(xué)學(xué)院計算機(jī)科學(xué)專業(yè)的瓦斯里斯?蘭博斯博士共同撰寫了這份研究報告,他表示,“此前的研究基于犯罪行為的性質(zhì)或每位法官的政策立場來預(yù)測結(jié)果,而這是第一次使用法院提供的案卷分析來預(yù)測判決結(jié)果。”

            "We expect this sort of tool would improve efficiencies of high level, in demand courts, but to become a reality, we need to test it against more articles and the case data submitted to the court."

            “我們希望這類工具能夠提升工作繁忙的高級法院的效率,但是為了實現(xiàn)這一想法,我們需要對更多遞交給法庭的文件以及案卷數(shù)據(jù)進(jìn)行測試?!?/p>

            "Ideally, we'd test and refine our algorithm using the applications made to the court rather than the published judgements, but without access to that data we rely on the court-published summaries of these submissions."

            “理想的做法是,我們利用遞交給法院的起訴書來測試和優(yōu)化算法,而不是用已公開的判決。但是由于無法獲得數(shù)據(jù),我們只能依靠法庭公布的案件總結(jié)報告。”

            The team found that judgements by the European Court of Human Rights are often based on non-legal facts rather than directly legal arguments, suggesting that judges are often swayed by moral considerations rather than simply sticking strictly to the legal framework.

            該團(tuán)隊發(fā)現(xiàn),歐洲人權(quán)法庭的判決通常基于非法律事實,而不是直接基于法律論據(jù),這意味著法官往往更多地受到道德考量的影響,而不只是嚴(yán)格地照章斷案。

            The research was published in the journal Computer Science.

            該研究發(fā)表在《計算機(jī)科學(xué)》期刊上。

            Vocabulary

            algorithm: 算法,計算程序

            empirical: 以實驗(或經(jīng)驗)為依據(jù)的,經(jīng)驗主義的

            倫敦大學(xué)學(xué)院、謝菲爾德大學(xué)的最新研究表明,人工智能已經(jīng)可以分析法律證據(jù)與道德問題,進(jìn)而預(yù)測審訊結(jié)果,準(zhǔn)確率高達(dá)79%。

            A computer 'judge' has been developed which can correctly predict verdicts of the European Court of Human Rights with 79 percent accuracy.

            科學(xué)家們研發(fā)出一臺電腦“法官”,它可以正確預(yù)測歐洲人權(quán)法庭的判決結(jié)果,準(zhǔn)確率達(dá)79%。

            Computer scientists at University College London and the University of Sheffield developed an algorithm which can not only weigh up legal evidence, but also moral considerations.

            倫敦大學(xué)學(xué)院和謝菲爾德大學(xué)的計算機(jī)科學(xué)家開發(fā)了一套算法,該算法不僅可以評估法律證據(jù),還能權(quán)衡道德考量。

            As early as the 1960s experts predicted that computers would one day be able to predict the outcomes of judicial decisions.

            早在20世紀(jì)60年代,專家們就預(yù)言有一天電腦將能夠預(yù)測司法判決的結(jié)果。

            But the new method is the first to predict the outcomes of court cases by automatically analysing case text using a machine learning algorithm.

            但是,這一新途徑是首次通過機(jī)器學(xué)習(xí)算法自動分析案件文本,來預(yù)測法庭判決結(jié)果。

            "We don't see AI replacing judges or lawyers, but we think they'd find it useful for rapidly identifying patterns in cases that lead to certain outcomes," said Dr Nikolaos Aletras, who led the study at UCL Computer Science.

            該研究的領(lǐng)頭人、倫敦大學(xué)學(xué)院計算機(jī)科學(xué)專業(yè)的尼古勞斯?阿爾特拉斯博士說:“我們不認(rèn)為人工智能取代了法官或律師,但是我們認(rèn)為電腦在快速識別案件模式從而分析出特定結(jié)果這方面,對法官律師會有幫助。”

            "It could also be a valuable tool for highlighting which cases are most likely to be violations of the European Convention on Human Rights."

            “電腦法官還能提示哪些案件最有可能違反《歐洲人權(quán)公約》,在這方面它將是個很有價值的工具。”

            To develop the algorithm, the team allowed an artificially intelligent computer to scan the published judgements from 584 cases relating to torture and degrading treatment, fair trials and privacy.

            為了開發(fā)這個算法,該團(tuán)隊讓人工智能電腦掃描了584例已公布的審判結(jié)果,這些案件都是關(guān)于虐待、侮辱、公正性和隱私的案件。

            The computer learned that certain phrases, facts, or circumstances occurred more frequently when there was a violation of the human rights act. After analysing hundreds of cases the computer was able to predict a verdict with 79 percent accuracy.

            這臺計算機(jī)學(xué)習(xí)特定措辭、事實或者違反人權(quán)法案件中常出現(xiàn)的情形。在分析過數(shù)百起案例后,計算機(jī)預(yù)測一次判決的準(zhǔn)確率達(dá)79%。

            "Previous studies have predicted outcomes based on the nature of the crime, or the policy position of each judge, so this is the first time judgements have been predicted using analysis of text prepared by the court," said co-author, Dr Vasileios Lampos, UCL Computer Science.

            倫敦大學(xué)學(xué)院計算機(jī)科學(xué)專業(yè)的瓦斯里斯?蘭博斯博士共同撰寫了這份研究報告,他表示,“此前的研究基于犯罪行為的性質(zhì)或每位法官的政策立場來預(yù)測結(jié)果,而這是第一次使用法院提供的案卷分析來預(yù)測判決結(jié)果?!?/p>

            "We expect this sort of tool would improve efficiencies of high level, in demand courts, but to become a reality, we need to test it against more articles and the case data submitted to the court."

            “我們希望這類工具能夠提升工作繁忙的高級法院的效率,但是為了實現(xiàn)這一想法,我們需要對更多遞交給法庭的文件以及案卷數(shù)據(jù)進(jìn)行測試?!?/p>

            "Ideally, we'd test and refine our algorithm using the applications made to the court rather than the published judgements, but without access to that data we rely on the court-published summaries of these submissions."

            “理想的做法是,我們利用遞交給法院的起訴書來測試和優(yōu)化算法,而不是用已公開的判決。但是由于無法獲得數(shù)據(jù),我們只能依靠法庭公布的案件總結(jié)報告?!?/p>

            The team found that judgements by the European Court of Human Rights are often based on non-legal facts rather than directly legal arguments, suggesting that judges are often swayed by moral considerations rather than simply sticking strictly to the legal framework.

            該團(tuán)隊發(fā)現(xiàn),歐洲人權(quán)法庭的判決通常基于非法律事實,而不是直接基于法律論據(jù),這意味著法官往往更多地受到道德考量的影響,而不只是嚴(yán)格地照章斷案。

            The research was published in the journal Computer Science.

            該研究發(fā)表在《計算機(jī)科學(xué)》期刊上。

            Vocabulary

            algorithm: 算法,計算程序

            empirical: 以實驗(或經(jīng)驗)為依據(jù)的,經(jīng)驗主義的

            信息流廣告 競價托管 招生通 周易 易經(jīng) 代理招生 二手車 網(wǎng)絡(luò)推廣 自學(xué)教程 招生代理 旅游攻略 非物質(zhì)文化遺產(chǎn) 河北信息網(wǎng) 石家莊人才網(wǎng) 買車咨詢 河北人才網(wǎng) 精雕圖 戲曲下載 河北生活網(wǎng) 好書推薦 工作計劃 游戲攻略 心理測試 石家莊網(wǎng)絡(luò)推廣 石家莊招聘 石家莊網(wǎng)絡(luò)營銷 培訓(xùn)網(wǎng) 好做題 游戲攻略 考研真題 代理招生 心理咨詢 游戲攻略 興趣愛好 網(wǎng)絡(luò)知識 品牌營銷 商標(biāo)交易 游戲攻略 短視頻代運營 秦皇島人才網(wǎng) PS修圖 寶寶起名 零基礎(chǔ)學(xué)習(xí)電腦 電商設(shè)計 職業(yè)培訓(xùn) 免費發(fā)布信息 服裝服飾 律師咨詢 搜救犬 Chat GPT中文版 語料庫 范文網(wǎng) 工作總結(jié) 二手車估價 情侶網(wǎng)名 愛采購代運營 情感文案 古詩詞 邯鄲人才網(wǎng) 鐵皮房 衡水人才網(wǎng) 石家莊點痣 微信運營 養(yǎng)花 名酒回收 石家莊代理記賬 女士發(fā)型 搜搜作文 石家莊人才網(wǎng) 銅雕 關(guān)鍵詞優(yōu)化 圍棋 chatGPT 讀后感 玄機(jī)派 企業(yè)服務(wù) 法律咨詢 chatGPT國內(nèi)版 chatGPT官網(wǎng) 勵志名言 兒童文學(xué) 河北代理記賬公司 教育培訓(xùn) 游戲推薦 抖音代運營 朋友圈文案 男士發(fā)型 培訓(xùn)招生 文玩 大可如意 保定人才網(wǎng) 黃金回收 承德人才網(wǎng) 石家莊人才網(wǎng) 模型機(jī) 高度酒 沐盛有禮 公司注冊 造紙術(shù) 唐山人才網(wǎng) 沐盛傳媒
            主站蜘蛛池模板: 亚洲乱码一区二区三区在线观看| 丰满岳妇乱一区二区三区| 中文字幕无线码一区2020青青| 中文字幕一区二区三区日韩精品| 国产日韩一区二区三区| 亚洲AV无码片一区二区三区| 亚洲国产美女福利直播秀一区二区| 亚洲色无码专区一区| 免费人妻精品一区二区三区| 久久久久成人精品一区二区| 国产精品一区二区在线观看| 无码欧精品亚洲日韩一区| 国产一区二区三区四| 麻豆AV一区二区三区久久| 国产AⅤ精品一区二区三区久久| 精品国产一区二区三区www| 亚洲A∨无码一区二区三区 | 无码毛片视频一区二区本码| 国产福利一区二区三区| 国产一区高清视频| 无码人妻精品一区二区三区久久| 性色av无码免费一区二区三区| 国产精品女同一区二区| 亚洲国产成人久久一区二区三区| 国产av成人一区二区三区| 精品成人乱色一区二区| 麻豆精品久久久一区二区| 中文字幕一区视频| 一本色道久久综合一区| 日韩精品中文字幕无码一区| 精品免费AV一区二区三区| 在线播放国产一区二区三区| 国产一区二区福利久久| 亚洲AV无码一区二区三区人 | 日韩美一区二区三区| 亚洲AV无码一区二区三区系列 | 亚洲一区精品视频在线 | 国产一区二区三区在线视頻| 国产精品久久无码一区二区三区网 | 不卡一区二区在线| 另类ts人妖一区二区三区|