考試輔導(dǎo):GMAT數(shù)學(xué)精解--算術(shù)概述

            雕龍文庫 分享 時間: 收藏本文

            考試輔導(dǎo):GMAT數(shù)學(xué)精解--算術(shù)概述

              1.平均數(shù)

              2.中數(shù)

              To calculate the median of n numbers,first order the numbers from least to greatest;if n is odd,the median is defined as the middle number,while if n is even,the median is defined as the average of the two middle numbers. For the data 6, 4, 7, 10, 4, the numbers, in order, are 4, 4, 6, 7, 10, and the median is 6, the middle number. For the numbers 4, 6, 6, 8, 9, 12, the median is /2 = 7. Note that the mean of these numbers is 7.5.

              3.眾數(shù):一組數(shù)中的眾數(shù)是指出現(xiàn)頻率最高的數(shù)。

              例:the mode of 7,9,6,7,2,1 is 7。

              4.值域:表明數(shù)的分布的量,其被定義為最大值減最小值的差。

              例:the range of1,7,27,27,36 is 36-= 37。

              5.標準方差:

              One of the most common measures of dispersion is the standard deviation. Generally speaking, the greater the data are spread away from the mean, the greater the standard deviation. The standard deviation of n numbers can be calculated as follows:

              find the arithmetic mean ;

              find the differences between the mean and each of the n numbers ;

              square each of the differences ;

              find the average of the squared differences ;

              take the nonnegative square root of this average.

              Notice that the standard deviation depends on every data value, although it depends most on values that are farthest from the mean. This is why a distribution with data grouped closely around the mean will have a smaller standard deviation than data spread far from the mean.

              6.排列與組合

              There are some useful methods for counting objects and sets of objects without actually listing the elements to be counted. The following principle of Multiplication is fundamental to these methods.

              If a first object may be chosen in m ways and a second object may be chosen in n ways, then there are mn ways of choosing both objects.

              As an example, suppose the objects are items on a menu. If a meal consists of one entree and one dessert and there are 5 entrees and 3 desserts on the menu, then 53 = 15 different meals can be ordered from the menu. As another example, each time a coin is flipped, there are two possible outcomes, heads and tails. If an experiment consists of 8 consecutive coin flips, the experiment has 28 possible outcomes, where each of these outcomes is a list of heads and tails in some order.

              階乘:factorial notation

              假如一個大于1的整數(shù)n,計算n的階乘被表示為n!,被定義為從1至n所有整數(shù)的乘積,

              例如:4! = 4321= 24

              

              排列:permutations

              The factorial is useful for counting the number of ways that a set of objects can be ordered. If a set of n objects is to be ordered from 1st to nth, there are n choices for the 1st object, n-1 choices for the 2nd object, n-2 choices for the 3rd object, and so on, until there is only 1 choice for the nth object. Thus, by the multiplication principle, the number of ways of ordering the n objects is

              n = n!

              For example, the number of ways of ordering the letters A, B, and C is 3!, or 6:ABC, ACB, BAC, BCA, CAB, and CBA.

              These orderings are called the permutations of the letters A, B, and C.也可以用P 33表示.

              Pkn = n!/ !

              例如:1, 2, 3, 4, 5這5個數(shù)字構(gòu)成不同的5位數(shù)的總數(shù)為5! = 120

              組合:combination

              A permutation can be thought of as a selection process in which objects are selected one by one in a certain order. If the order of selection is not relevant and only k objects are to be selected from a larger set of n objects, a different counting method is employed.

              Specially consider a set of n objects from which a complete selection of k objects is to be made without regard to order, where 0n . Then the number of possible complete selections of k objects is called the number of combinations of n objects taken k at a time and is Ckn.

              從n個元素中任選k個元素的數(shù)目為:

              Ckn. = n!/ ! k!

              例如:從5個不同元素中任選2個的組合為C25 = 5!/2! 3!= 10

              排列組合的一些特性

              加法原則:Rule of Addition

              做某件事有x種方法,每種方法中又有各種不同的解決方法。例如第一種方法中有y1種方法,第二種方法有y2種方法,等等,第x種方法中又有yx種不同的方法,每一種均可完成這件事,即它們之間的關(guān)系用or表達,那么一般使用加法原則,即有:y1+ y2+。。。+ yx種方法。

              乘法原則:Rule of Multiplication

              完成一件事有x個步驟,第一步有y1種方法,第二步有y2種方法,。。。,第x步有yx種方法,完成這件事一共有y1 y2 。。。 yx種方法。

              以上只是GMAT考題中經(jīng)常涉及到的數(shù)學(xué)算術(shù)方面的問題,今后我們將陸續(xù)在新開辟的網(wǎng)上課堂中介紹代數(shù)、幾何以及系統(tǒng)的習(xí)題、講解,以幫助大家在GMAT數(shù)學(xué)考試中更好地發(fā)揮中國學(xué)生的優(yōu)勢,拿到讓美國人瞠目結(jié)舌的成績!

              

              1.平均數(shù)

              2.中數(shù)

              To calculate the median of n numbers,first order the numbers from least to greatest;if n is odd,the median is defined as the middle number,while if n is even,the median is defined as the average of the two middle numbers. For the data 6, 4, 7, 10, 4, the numbers, in order, are 4, 4, 6, 7, 10, and the median is 6, the middle number. For the numbers 4, 6, 6, 8, 9, 12, the median is /2 = 7. Note that the mean of these numbers is 7.5.

              3.眾數(shù):一組數(shù)中的眾數(shù)是指出現(xiàn)頻率最高的數(shù)。

              例:the mode of 7,9,6,7,2,1 is 7。

              4.值域:表明數(shù)的分布的量,其被定義為最大值減最小值的差。

              例:the range of1,7,27,27,36 is 36-= 37。

              5.標準方差:

              One of the most common measures of dispersion is the standard deviation. Generally speaking, the greater the data are spread away from the mean, the greater the standard deviation. The standard deviation of n numbers can be calculated as follows:

              find the arithmetic mean ;

              find the differences between the mean and each of the n numbers ;

              square each of the differences ;

              find the average of the squared differences ;

              take the nonnegative square root of this average.

              Notice that the standard deviation depends on every data value, although it depends most on values that are farthest from the mean. This is why a distribution with data grouped closely around the mean will have a smaller standard deviation than data spread far from the mean.

              6.排列與組合

              There are some useful methods for counting objects and sets of objects without actually listing the elements to be counted. The following principle of Multiplication is fundamental to these methods.

              If a first object may be chosen in m ways and a second object may be chosen in n ways, then there are mn ways of choosing both objects.

              As an example, suppose the objects are items on a menu. If a meal consists of one entree and one dessert and there are 5 entrees and 3 desserts on the menu, then 53 = 15 different meals can be ordered from the menu. As another example, each time a coin is flipped, there are two possible outcomes, heads and tails. If an experiment consists of 8 consecutive coin flips, the experiment has 28 possible outcomes, where each of these outcomes is a list of heads and tails in some order.

              階乘:factorial notation

              假如一個大于1的整數(shù)n,計算n的階乘被表示為n!,被定義為從1至n所有整數(shù)的乘積,

              例如:4! = 4321= 24

              

              排列:permutations

              The factorial is useful for counting the number of ways that a set of objects can be ordered. If a set of n objects is to be ordered from 1st to nth, there are n choices for the 1st object, n-1 choices for the 2nd object, n-2 choices for the 3rd object, and so on, until there is only 1 choice for the nth object. Thus, by the multiplication principle, the number of ways of ordering the n objects is

              n = n!

              For example, the number of ways of ordering the letters A, B, and C is 3!, or 6:ABC, ACB, BAC, BCA, CAB, and CBA.

              These orderings are called the permutations of the letters A, B, and C.也可以用P 33表示.

              Pkn = n!/ !

              例如:1, 2, 3, 4, 5這5個數(shù)字構(gòu)成不同的5位數(shù)的總數(shù)為5! = 120

              組合:combination

              A permutation can be thought of as a selection process in which objects are selected one by one in a certain order. If the order of selection is not relevant and only k objects are to be selected from a larger set of n objects, a different counting method is employed.

              Specially consider a set of n objects from which a complete selection of k objects is to be made without regard to order, where 0n . Then the number of possible complete selections of k objects is called the number of combinations of n objects taken k at a time and is Ckn.

              從n個元素中任選k個元素的數(shù)目為:

              Ckn. = n!/ ! k!

              例如:從5個不同元素中任選2個的組合為C25 = 5!/2! 3!= 10

              排列組合的一些特性

              加法原則:Rule of Addition

              做某件事有x種方法,每種方法中又有各種不同的解決方法。例如第一種方法中有y1種方法,第二種方法有y2種方法,等等,第x種方法中又有yx種不同的方法,每一種均可完成這件事,即它們之間的關(guān)系用or表達,那么一般使用加法原則,即有:y1+ y2+。。。+ yx種方法。

              乘法原則:Rule of Multiplication

              完成一件事有x個步驟,第一步有y1種方法,第二步有y2種方法,。。。,第x步有yx種方法,完成這件事一共有y1 y2 。。。 yx種方法。

              以上只是GMAT考題中經(jīng)常涉及到的數(shù)學(xué)算術(shù)方面的問題,今后我們將陸續(xù)在新開辟的網(wǎng)上課堂中介紹代數(shù)、幾何以及系統(tǒng)的習(xí)題、講解,以幫助大家在GMAT數(shù)學(xué)考試中更好地發(fā)揮中國學(xué)生的優(yōu)勢,拿到讓美國人瞠目結(jié)舌的成績!

              

            信息流廣告 競價托管 招生通 周易 易經(jīng) 代理招生 二手車 網(wǎng)絡(luò)推廣 自學(xué)教程 招生代理 旅游攻略 非物質(zhì)文化遺產(chǎn) 河北信息網(wǎng) 石家莊人才網(wǎng) 買車咨詢 河北人才網(wǎng) 精雕圖 戲曲下載 河北生活網(wǎng) 好書推薦 工作計劃 游戲攻略 心理測試 石家莊網(wǎng)絡(luò)推廣 石家莊招聘 石家莊網(wǎng)絡(luò)營銷 培訓(xùn)網(wǎng) 好做題 游戲攻略 考研真題 代理招生 心理咨詢 游戲攻略 興趣愛好 網(wǎng)絡(luò)知識 品牌營銷 商標交易 游戲攻略 短視頻代運營 秦皇島人才網(wǎng) PS修圖 寶寶起名 零基礎(chǔ)學(xué)習(xí)電腦 電商設(shè)計 職業(yè)培訓(xùn) 免費發(fā)布信息 服裝服飾 律師咨詢 搜救犬 Chat GPT中文版 語料庫 范文網(wǎng) 工作總結(jié) 二手車估價 情侶網(wǎng)名 愛采購代運營 情感文案 古詩詞 邯鄲人才網(wǎng) 鐵皮房 衡水人才網(wǎng) 石家莊點痣 微信運營 養(yǎng)花 名酒回收 石家莊代理記賬 女士發(fā)型 搜搜作文 石家莊人才網(wǎng) 銅雕 關(guān)鍵詞優(yōu)化 圍棋 chatGPT 讀后感 玄機派 企業(yè)服務(wù) 法律咨詢 chatGPT國內(nèi)版 chatGPT官網(wǎng) 勵志名言 兒童文學(xué) 河北代理記賬公司 教育培訓(xùn) 游戲推薦 抖音代運營 朋友圈文案 男士發(fā)型 培訓(xùn)招生 文玩 大可如意 保定人才網(wǎng) 黃金回收 承德人才網(wǎng) 石家莊人才網(wǎng) 模型機 高度酒 沐盛有禮 公司注冊 造紙術(shù) 唐山人才網(wǎng) 沐盛傳媒
            主站蜘蛛池模板: 婷婷国产成人精品一区二| 人妻视频一区二区三区免费| 亚洲av午夜福利精品一区人妖| 一区二区三区美女视频| 日本一区午夜艳熟免费| 国产亚洲福利精品一区| 无码人妻一区二区三区在线视频 | 日本免费一区二区三区最新| 国产福利酱国产一区二区| 国产乱子伦一区二区三区| 一区二区三区无码高清| 色妞AV永久一区二区国产AV | 久久久久人妻精品一区 | 91在线看片一区国产| 国产剧情一区二区| 日韩精品一区二区亚洲AV观看| 精品人妻无码一区二区色欲产成人| 精品一区狼人国产在线| 亚洲熟女一区二区三区| 日韩伦理一区二区| 精品性影院一区二区三区内射 | 亚洲一区免费视频| 上原亚衣一区二区在线观看| 在线日产精品一区| 精品国产AⅤ一区二区三区4区 | 精品无码综合一区二区三区| 国产av熟女一区二区三区| 国产短视频精品一区二区三区| 国产一区二区三区日韩精品| 国产经典一区二区三区蜜芽| 任你躁国产自任一区二区三区 | 亚洲国产综合无码一区二区二三区| 亚洲熟妇AV一区二区三区浪潮| 性色av一区二区三区夜夜嗨 | 久夜色精品国产一区二区三区| 日韩成人无码一区二区三区| 精品国产AV一区二区三区| 人妻av无码一区二区三区| 奇米精品一区二区三区在线观看| 福利一区二区三区视频午夜观看| 国产日本亚洲一区二区三区|