不等式與不等式組的知識樹

            3388 分享 時間: 收藏本文

            不等式與不等式組的知識樹

            每個人都曾試圖在平淡的學習、工作和生活中寫一篇文章。寫作是培養人的觀察、聯想、想象、思維和記憶的重要手段。范文怎么寫才能發揮它最大的作用呢?下面是小編為大家收集的優秀范文,供大家參考借鑒,希望可以幫助到有需要的朋友。

            不等式與不等式組的知識樹篇一

            1、感受生活中存在著大量的不等關系,了解不等式和一元一次不等式的意義,通過解決簡單的實際問題,使學生自發地尋找不等式的解,會把不等式的解集正確地表示到數軸上;

            2、經歷由具體實例建立不等模型的過程,經歷探究不等式解與解集的不同意義的過程,滲透數形結合思想;

            3、通過對不等式、不等式解與解集的探究,引導學生在獨立思考的基礎上積極參與對數學問題的討論,培養他們的合作交流意識;讓學生充分體會到生活中處處有數學,并能將它們應用到生活的各個領域。

            理解并掌握不等式的性質;

            正確運用不等式的性質;

            建立方程解決實際問題,會解"ax+b=cx+d"類型的一元一次方程;

            尋找實際問題中的不等關系,建立數學模型;

            一元一次不等式組的解集和解法。

            一元一次不等式組解集的理解;

            弄清列不等式解決實際問題的思想方法,用去括號法解一元一次不等式;

            正確理解不等式、不等式解與解集的意義,把不等式的解集正確地表示到數軸上。

            1、不等式:用符號"<",">","≤","≥"表示大小關系的式子叫做不等式。

            2、不等式分類:不等式分為嚴格不等式與非嚴格不等式。

            一般地,用純粹的大于號、小于號">","<"連接的不等式稱為嚴格不等式,用不小于號(大于或等于號)、不大于號(小于或等于號)"≥","≤"連接的不等式稱為非嚴格不等式,或稱廣義不等式。

            3、不等式的解:使不等式成立的未知數的值,叫做不等式的解。

            4、不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。

            5、不等式解集的表示方法:

            (1)用不等式表示:一般的,一個含未知數的不等式有無數個解,其解集是一個范圍,這個范圍可用最簡單的不等式表達出來,例如:x—1≤2的解集是x≤3

            (2)用數軸表示:不等式的解集可以在數軸上直觀地表示出來,形象地說明不等式有無限多個解,用數軸表示不等式的解集要注意兩點:一是定邊界線;二是定方向。

            6、解不等式可遵循的一些同解原理

            (1)不等式f(x)< g(x)與不等式 g(x)>f(x)同解。

            (2)如果不等式f(x)< g(x)的定義域被解析式h(x)的定義域所包含,那么不等式 f(x)< g(x)與不等式h(x)+f(x)

            (3)如果不等式f(x)< g(x)的定義域被解析式h(x)的定義域所包含,并且h(x)>0,那么不等式f(x)< g(x)與不等式h(x)f(x)0,那么不等式f(x)< g(x)與不等式h(x)f(x)>h(x)g(x)同解。

            7、不等式的性質:

            (1)如果x>y,那么yy;(對稱性)

            (2)如果x>y,y>z;那么x>z;(傳遞性)

            (3)如果x>y,而z為任意實數或整式,那么x+z>y+z;(加法則)

            (4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz

            (5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z

            (6)如果x>y,m>n,那么x+m>y+n(充分不必要條件)

            (7)如果x>y>0,m>n>0,那么xm>yn

            (8)如果x>y>0,那么x的n次冪>y的n次冪(n為正數)

            8、一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數,并且未知數的最高次數是1,像這樣的不等式,叫做一元一次不等式。

            9、解一元一次不等式的一般順序:

            (1)去分母 (運用不等式性質2、3)

            (2)去括號

            (3)移項 (運用不等式性質1)

            (4)合并同類項

            (5)將未知數的系數化為1 (運用不等式性質2、3)

            (6)有些時候需要在數軸上表示不等式的解集

            10、 一元一次不等式與一次函數的綜合運用:

            一般先求出函數表達式,再化簡不等式求解。

            11、一元一次不等式組:一般地,關于同一未知數的幾個一元一次不等式合在一一起,就組成

            了一個一元一次不等式組。

            12、解一元一次不等式組的步驟:

            (1) 求出每個不等式的解集;

            (2) 求出每個不等式的解集的公共部分;(一般利用數軸)

            (3) 用代數符號語言來表示公共部分。(也可以說成是下結論)

            13、解不等式的訣竅

            (1)大于大于取大的(大大大);

            例如:x>—1,x>2 ,不等式組的解集是x>2

            (2)小于小于取小的(小小小);

            例如:x<—4,x<—6,不等式組的解集是x<—6

            (3)大于小于交叉取中間;

            (4)無公共部分分開無解了;

            14、解不等式組的口訣

            (1)同大取大

            例如,x>2,x>3 ,不等式組的解集是x>3

            (2)同小取小

            例如,x<2,x<3 ,不等式組的解集是x<2

            (3)大小小大中間找

            例如,x<2,x>1,不等式組的解集是1

            (4)大大小小不用找

            例如,x<2,x>3,不等式組無解

            15、應用不等式組解決實際問題的步驟

            (1)審清題意

            (2)設未知數,根據所設未知數列出不等式組

            (3)解不等式組

            (4)由不等式組的解確立實際問題的解

            (5)作答

            16、用不等式組解決實際問題:其公共解不一定就為實際問題的解,所以需結合生活實際具體分析,最后確定結果。

            不等式與不等式組的知識樹篇二

            用或號表示大小關系的式子叫做不等式。

            使不等式成立的未知數的值叫做不等式的解。

            能使不等式成立的未知數的取值范圍,叫做不等式解的集合,簡稱解集。

            含有一個未知數,未知數的次數是1的不等式,叫做一元一次不等式。

            不等式有以下性質:

            不等式的性質1 不等式兩邊加(或減)同一個數(或式子),不等號的方向不變。

            不等式的性質2 不等式兩邊乘(或除以)同一個正數,不等號的方向不變。

            不等式的性質3 不等式兩邊乘(或除以)同一個負數,不等號的方向改變。

            解一元一次方程,要根據等式的性質,將方程逐步化為x=a的形式;而解一元一次不等式,則要根據不等式的性質,將不等式逐步化為x

            把兩個不等式合起來,就組成了一個一元一次不等式組。

            幾個不等式的解集的公共部分,叫做由它們所組成的不等式的解集。解不等式就是求它的解集。

            對于具有多種不等關系的問題,可通過不等式組解決。解一元一次不等式組時。一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數軸可以直觀地表示不等式組的解集。

            不等式與不等式組的知識樹篇三

            1.二元一次方程:含有兩個未知數,并且含未知數項的次數是1,這樣的方程是二元一次方程.注意:一般說二元一次方程有無數個解.

            2.二元一次方程組:兩個二元一次方程聯立在一起是二元一次方程組.

            3.二元一次方程組的解:使二元一次方程組的兩個方程,左右兩邊都相等的兩個未知數的值,叫二元一次方程組的解.注意:一般說二元一次方程組只有解(即公共解).

            4.二元一次方程組的解法:

            (1)代入消元法;(2)加減消元法;

            (3)注意:判斷如何解簡單是關鍵.

            ※5.一次方程組的應用:

            (1)對于一個應用題設出的未知數越多,列方程組可能容易一些,但解方程組可能比較麻煩,反之則難列易解

            (2)對于方程組,若方程個數與未知數個數相等時,一般可求出未知數的'值;

            (3)對于方程組,若方程個數比未知數個數少一個時,一般求不出未知數的值,但總可以求出任何兩個未知數的關系.

            一元一次不等式(組)

            1.不等式:用不等號,把兩個代數式連接起來的式子叫不等式.

            2.不等式的基本性質:

            不等式的基本性質1:不等式兩邊都加上(或減去)同一個數或同一個整式,不等號的方向不變;

            不等式的基本性質2:不等式兩邊都乘以(或除以)同一個正數,不等號的方向不變;

            不等式的基本性質3:不等式兩邊都乘以(或除以)同一個負數,不等號的方向要改變.

            3.不等式的解集:能使不等式成立的未知數的值,叫做這個不等式的解;不等式所有解的集合,叫做這個不等式的解集.

            4.一元一次不等式:只含有一個未知數,并且未知數的次數是1,系數不等于零的不等式,叫做一元一次不等式;它的標準形式是ax+b0或ax+b0,(a0).

            5.一元一次不等式的解法:一元一次不等式的解法與解一元一次方程的解法類似,但一定要注意不等式性質3的應用;注意:在數軸上表示不等式的解集時,要注意空圈和實點.

            不等式與不等式組的知識樹篇四

            1.不等式的解集:一個含有未知數的不等式的所有解,組成這個不等式的解集。

            2.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數,并且未知數的最高次數是1,像這樣的不等式,叫做一元一次不等式。

            3.一元一次不等式組:一般地,關于同一未知數的幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。

            4.一元一次不等式組的解集:一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

            5.不等式的性質:

            不等式的基本性質1:不等式的兩邊都加上(或減去)同一個數(或式子),不等號的方向不變。

            不等式的基本性質2:不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變。

            不等式的基本性質3:不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變。

            1、單項式和多項式統稱為整式。

            2、單項式或多項式都是整式。

            3、整式不一定是單項式。

            4、整式不一定是多項式。

            5、分母中含有字母的代數式不是整式;而是今后將要學習的分式。

            主站蜘蛛池模板: 日本人真淫视频一区二区三区| 精品人妻一区二区三区浪潮在线| 久久精品黄AA片一区二区三区| 无码喷水一区二区浪潮AV| 无码日韩精品一区二区人妻| 亚洲视频一区二区三区四区| 久久精品一区二区国产| 国产一区二区三区四| 亚洲AV无码一区二区三区电影| 性色AV一区二区三区| 成人区精品人妻一区二区不卡| 日本在线观看一区二区三区| 尤物精品视频一区二区三区| 欧美日韩精品一区二区在线视频| 色偷偷av一区二区三区| 久久久久久免费一区二区三区| 一区二区三区四区在线观看视频| 国产日韩精品一区二区三区| 女同一区二区在线观看| 亚洲熟妇成人精品一区| 日本一区二区三区爆乳| 一区二区传媒有限公司| 久久精品国内一区二区三区| 亚洲综合在线一区二区三区| 玩弄放荡人妻一区二区三区| 亚洲国产AV无码一区二区三区| 国产精品自拍一区| 日韩av片无码一区二区不卡电影| 国产精品视频一区二区三区经| 国产精品一区二区久久| 夜夜高潮夜夜爽夜夜爱爱一区| 国产乱码精品一区二区三区 | 国产一区二区精品久久岳| 亚洲国产精品一区二区第四页 | 亚洲一区二区三区AV无码| 中文字幕aⅴ人妻一区二区| 久久精品一区二区三区日韩 | 欧美日韩综合一区二区三区| 国产aⅴ精品一区二区三区久久| 国产福利一区二区在线视频 | 久久久久人妻精品一区二区三区 |