最新余弦定理新教材說課稿
范文為教學中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。范文書寫有哪些要求呢?我們怎樣才能寫好一篇范文呢?接下來小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來看一看吧。
余弦定理新教材說課稿篇一
《余弦定理》是全日制中等教育國家規(guī)劃教材(人教版)數(shù)學第一冊中第六章平面向量第六部分。余弦定理是歐氏空間度量幾何的最重要定理,是解斜三角形的重要定理,是整個測量學的基礎(chǔ)。余弦定理是勾股定理的推廣,可用解析法、向量法等方法證明。余弦定理主要能解決有關(guān)三角形的三類問題:
1)、已知兩邊及其夾角,求第三邊和其他兩個角。
2)、已知三邊求三個內(nèi)角;
3)、判斷三角形的形狀。以及相關(guān)的證明題。
本著數(shù)學與專業(yè)有機結(jié)合的指導(dǎo)思想,讓數(shù)學服務(wù)于專業(yè)的需要。以及最大限度的提高學生的學習興趣,在本節(jié)課,我不是將余弦定理簡單呈現(xiàn)給學生,而是創(chuàng)造設(shè)情境,設(shè)計了與機械相關(guān)聯(lián)并具有愛國主題的二個任務(wù),通過任務(wù)驅(qū)動法教學,極大提高了學生的學習興趣,激發(fā)學生探索新知識的強烈求知欲望,在完成數(shù)學教學任務(wù)的同時,強化了數(shù)學與專業(yè)的有機結(jié)合,培養(yǎng)了學生將數(shù)學知識運用于自身專業(yè)中的能力。同時通過任務(wù)驅(qū)動,培養(yǎng)了學生自主探究式學習的能力;提升解決實際實際問題的能力。因為所設(shè)計的兩個任務(wù)具有愛國主義題材,學生在完成知識學習的同時,也極大的激發(fā)了愛國主義精神。
在確定教學方法前,首先要求教師吃透教材,選擇恰當?shù)慕虒W方法和教學手段把知識傳授給學生。本節(jié)課主要采用任務(wù)驅(qū)動法、引導(dǎo)發(fā)現(xiàn)法、觀察法、歸納總結(jié)法、講練結(jié)合法。并采用電教手段使用多媒體輔助教學。
1、任務(wù)驅(qū)動法
教師精心設(shè)計與機械專業(yè)相關(guān)聯(lián)的二個任務(wù),作為貫穿整節(jié)課的主線,通過具體任務(wù)的完成,提高學生學習的興趣,激發(fā)求知欲,啟發(fā)學生對問題進行思考。在研究過程中,激發(fā)學生探索新知識的強烈欲望。提升解決實際總是的能力,并極大的激發(fā)了愛國主義精神。
2、引導(dǎo)發(fā)現(xiàn)法、觀察法
通過對勾股定理的觀察和三角形直角的相關(guān)變形,學生從中受啟發(fā),發(fā)現(xiàn)余弦定理,并證明它。
3、歸納總結(jié)法
學生通過前期的探索研究,自主歸納總結(jié)出余弦定理及其推論及判斷三角形形狀的相關(guān)規(guī)律。
4、講練結(jié)合法
講授充分發(fā)揮教師主導(dǎo)作用,引導(dǎo)學生自主學習。練習讓學生從多角度對所學定理進行認知,及時鞏固所學的知識,鍛煉了解決實際問題的能力,發(fā)揮出學生的主觀能動性,成為學習的主體。
學生學法主要有觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法。經(jīng)教師啟發(fā)、誘導(dǎo),學生通過觀察與分析去發(fā)現(xiàn)并證明余弦定理,培養(yǎng)歸納與猜想、抽象與概括等邏輯思維能力,訓練思維品質(zhì)。
(一)知識目標
1、使學生掌握余弦定理及其證明。
2、使學生初步掌握應(yīng)用余弦定理解斜三角形。
(二)能力目標
1、培養(yǎng)學生在本專業(yè)范圍內(nèi)熟練運用余弦定理解決實際問題的`能力。
2、通過啟發(fā)、誘導(dǎo)學生發(fā)現(xiàn)和證明余弦定理的過程,培養(yǎng)學生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
3、通過對余弦定理的推導(dǎo),培養(yǎng)學生的知識遷移能力和建模意識,及合作學習的意識。
(三)德育目標
1、培養(yǎng)學生的愛國主義精神、及團結(jié)、協(xié)作精神。
2、通過三角函數(shù)、余弦定理、向量的數(shù)量積等知識的聯(lián)系理解事物之間普遍聯(lián)系與辯證統(tǒng)一。
教學重點是余弦定理及應(yīng)用余弦定理解斜三角形;
分析勾股定理的結(jié)構(gòu)特征,從而突破發(fā)現(xiàn)余弦定理,應(yīng)用余弦定理解斜三角形。
教學中注重突出重點、突破難點,從五個層次進行教學。
創(chuàng)設(shè)情境、任務(wù)驅(qū)動;
引導(dǎo)探究、發(fā)現(xiàn)定理;
完成任務(wù)、應(yīng)用遷移;
拓展升華、交流反思;
小結(jié)歸納、布置作業(yè)。
(一)、導(dǎo)入
1、教師創(chuàng)設(shè)情境設(shè)置二個任務(wù),做為貫穿本課的主線和數(shù)學與專業(yè)有機結(jié)合的鈕帶,通過完成這二個任務(wù),達到掌握余弦定理并學會應(yīng)用的目標。
2、通過與直角三角形勾股定理引出余弦定理(快樂起點)經(jīng)教師啟發(fā)、誘導(dǎo),學生通過探索研究,合理猜想來發(fā)現(xiàn)余弦定理。
(二)、新課
1、證明猜想,導(dǎo)出余弦定理及余弦定理的變形
經(jīng)過嚴密邏輯推理證明得出余弦定理,這一過程中,鍛煉了學生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
2、解決二個任務(wù)
3、操作演練,鞏固提高。
4、小結(jié):
通過學生口答方式小結(jié),讓學生強化記憶,分清重點,深化對余弦定理的理解。
5、作業(yè):
分層布置作業(yè),根據(jù)不同層次學生將作業(yè)分為必做題和選做題。使不同程度的學生都有所提高。
板書是課堂教學重要部分,為再現(xiàn)知識體系,突出重點,將余弦定理知識體系展示在板書中,利于學生加深印象,理清思路。
在教學設(shè)計上,采用任務(wù)驅(qū)動,教師精心設(shè)計與機械專業(yè)相關(guān)聯(lián)的二個任務(wù),作為貫穿整節(jié)課的主線,通過具體任務(wù)的完成,即提高學生學習的興趣,又激發(fā)求知欲;知識點學習則循序漸進,符合學生的認知特點。經(jīng)教師啟發(fā)、誘導(dǎo),學生通過觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法在獲取新知的同時,培養(yǎng)了歸納與猜想、抽象與概括等邏輯思維能力。
余弦定理新教材說課稿篇二
1.地位及作用
"余弦定理"是人教a版數(shù)學必修5主要內(nèi)容之一,是解決有關(guān)斜三角形問題的兩個重要定理之一,也是初中"勾股定理"內(nèi)容的直接延拓,它是三角函數(shù)一般知識和平面向量知識在三角形中的具體運用,是解可轉(zhuǎn)化為三角形計算問題的其它數(shù)學問題及生產(chǎn)、生活實際問題的重要工具具有廣泛的應(yīng)用價值,起到承上啟下的作用。
2.教學重、難點
重點:余弦定理的證明過程和定理的簡單應(yīng)用。
難點:利用向量的數(shù)量積證余弦定理的思路。
知識目標:能推導(dǎo)余弦定理及其推論,能運用余弦定理解已知"邊,角,邊"和"邊,邊,邊"兩類三角形。
能力目標:培養(yǎng)學生知識的遷移能力;歸納總結(jié)的能力;運用所學知識解決實際問題的能力。
情感目標:從實際問題出發(fā)運用數(shù)學知識解決問題這個過程體驗數(shù)學在實際生活中的運用,激發(fā)學生學習數(shù)學的興趣。通過主動探索,合作交流,感受探索的樂趣和成功的體驗,體會數(shù)學的理性和嚴謹。
數(shù)學課堂上首先要重視知識的發(fā)生過程,既能展現(xiàn)知識的獲取,又能暴露解決問題的思維。在本節(jié)教學中,我將遵循"提出問題、分析問題、解決問題 "的.步驟逐步推進,以課堂教學的組織者、引導(dǎo)者、合作者的身份,組織學生探究、歸納、推導(dǎo),引導(dǎo)學生逐個突破難點,師生共同解決問題,使學生在各種數(shù)學活動中掌握各種數(shù)學基本技能,初步學會從數(shù)學角度去觀察事物和思考問題,產(chǎn)生學習數(shù)學的愿望和興趣。
本節(jié)教學中通過創(chuàng)設(shè)情境,充分調(diào)動學生已有的學習經(jīng)驗,讓學生經(jīng)歷"現(xiàn)實問題轉(zhuǎn)化為數(shù)學問題"的過程,發(fā)現(xiàn)新的知識,把學生的潛意識狀態(tài)的好奇心變?yōu)樽杂X求知的創(chuàng)新意識。又通過實際操作,使剛產(chǎn)生的數(shù)學知識得到完善,提高了學生動手動腦的能力和增強了研究探索的綜合素質(zhì)。
幫助學生從平面幾何、三角函數(shù)、向量知識等方面進行分析討論,選擇簡潔的處理工具,引發(fā)學生的積極討論。你能夠有更好的具體的量化方法嗎?問題可轉(zhuǎn)化為已知三角形兩邊長和夾角求第三邊的問題,即:在 中已知ac=b,ab=c和a,求a.
學生對向量知識可能遺忘,注意復(fù)習;在利用數(shù)量積時,角度可能出現(xiàn)錯誤,出現(xiàn)不同的表示形式,讓學生從錯誤中發(fā)現(xiàn)問題,鞏固向量知識,明確向量工具的作用。同時,讓學生明確數(shù)學中的轉(zhuǎn)化思想:化未知為已知。將實際問題轉(zhuǎn)化成數(shù)學問題,引導(dǎo)學生分析問題。在 中已知a=5,b=7,c=8,求b.
學生思考或者討論,若有同學答則順勢引出推論,若不能作答則由老師引導(dǎo)推出推論,然后返回解決該問題。
讓學生觀察推論的特征,討論該推論有什么用。
余弦定理新教材說課稿篇三
大家好,今天我向大家說課的題目是《余弦定理》。下面我將從以下幾個方面介紹我這堂課的教學設(shè)計。
本節(jié)知識是職業(yè)高中數(shù)學教材第五章第九節(jié)《解三角形》的內(nèi)容,與初中學習的勾股定理有密切的聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,在實際測量問題及航海問題中都有著廣泛的用,而且解三角形和三角函數(shù)聯(lián)系在高考當中也時常考一些解答題。并且在探索建立余弦定理時還用到向量法,坐標法等數(shù)學方法,同時還用到了數(shù)形結(jié)合,方程等數(shù)學思想。因此,余弦定理的知識非常重要。特別是在三角形中的求角問題中作用更大。做為職業(yè)高中的學生必須學好學透這節(jié)知識
根據(jù)上述教材內(nèi)容分析,考慮到學生已有的認知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學目標:
①理解掌握余弦定理,能正確使用定理
②培養(yǎng)學生教形結(jié)合分析問題的能力
③培養(yǎng)學生嚴謹?shù)耐评硭季S和良好的審美能力。
教學重點:定理的探究及應(yīng)用
教學難點:定理的探究及理解
對于職業(yè)高中的高一學生,雖然知識經(jīng)驗并不豐富,但他們的智利發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,所以我在授課時注重引導(dǎo)、啟發(fā)和探討以符合這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。
根據(jù)教材的內(nèi)容和編排的特點,為更有效地突出重點,突破難點,以學生的發(fā)展為本,遵照學生的認識規(guī)律,本講遵照以教師為主導(dǎo),以學生為主體,訓練為主線的指導(dǎo)思想,采用探究式課堂教學模式,即在教學過程中,在教師的啟發(fā)引導(dǎo)下,以學生獨立自主和合作交流為前提,以“余弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,讓學生的思維由問題開始,到發(fā)想、探究,定理的推導(dǎo),并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發(fā)他們的興趣,鼓勵學生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當?shù)?提示和指導(dǎo)。突破難點的方法:抓住學生的能力線,聯(lián)系方法與技能使學生較易證明余弦定理,另外通過例題和練習來突破難點,注重知識的形成過程,突出教學理念的創(chuàng)新。
指導(dǎo)學生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學生的主體地位,增強學生由特殊到一般的數(shù)學思維能力,形成了實事求是的科學態(tài)度,增強了鍥而不舍的求學精神。
第一:創(chuàng)設(shè)情景,大概用2分鐘
第二:實踐探究,形成定理,大約用25分鐘
第三:應(yīng)用定理,拓展反思,大約用13分鐘
(一)創(chuàng)設(shè)情境,布疑激趣
“興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,從用正弦定理可解的兩類三角形出發(fā),揭示勾股定理特點,說明正弦定理解三角形不完備,還有用正弦定理不能直接求解的三角形,應(yīng)怎樣解決呢?需要我們繼續(xù)探究,引出課題。
(二)邏輯推理,證明猜想
提出問題,探究問題,形成定理,回顧分析,形成結(jié)論,再認識結(jié)論,總結(jié)用途。變形延伸,培養(yǎng)發(fā)散,對比特殊,認知推廣。落實定理,構(gòu)建定理應(yīng)用體系。
(三)歸納總結(jié),簡單應(yīng)用
1、讓學生用文字敘述余弦定理,引導(dǎo)學生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學美的享受。
2、回顧余弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。
(四)講解例題,鞏固定理
1、審題確定條件。
2、明確求解任務(wù)。
3、確定使用公式。
4、科學求解過程。
(五)課堂練習,提高鞏固
1、在△abc中,已知下列條件,解三角形
(1)a=45°,c=30°,c=10cm
(2)a=60°,b=45°,c=20cm
2、在△abc中,已知下列條件,解三角形
(1)a=20cm,b=11cm,b=30°
(2)c=54cm,b=39cm,c=115°
學生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。
(六)小結(jié)反思,提高認識
通過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?
1、用向量證明了余弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學思想。
2、兩種表達。
3、兩類問題。
(七)思維拓展,自主探究
利用余弦定理判斷三角形形狀,即余弦定理的推論。
余弦定理新教材說課稿篇四
《余弦定理》是全日制中等教育國家規(guī)劃教材(人教版)數(shù)學第一冊中第六章平面向量第六部分。余弦定理是歐氏空間度量幾何的最重要定理,是解斜三角形的重要定理,是整個測量學的基礎(chǔ)。余弦定理是勾股定理的推廣,可用解析法、向量法等方法證明。余弦定理主要能解決有關(guān)三角形的三類問題:
1、已知兩邊及其夾角,求第三邊和其他兩個角。
2、已知三邊求三個內(nèi)角;
3、判斷三角形的形狀。以及相關(guān)的證明題。
本著數(shù)學與專業(yè)有機結(jié)合的指導(dǎo)思想,讓數(shù)學服務(wù)于專業(yè)的需要。以及最大限度的提高學生的學習興趣,在本節(jié)課,我不是將余弦定理簡單呈現(xiàn)給學生,而是創(chuàng)造設(shè)情境,設(shè)計了與機械相關(guān)聯(lián)并具有愛國主題的二個任務(wù),通過任務(wù)驅(qū)動法教學,極大提高了學生的學習興趣,激發(fā)學生探索新知識的強烈求知欲望,在完成數(shù)學教學任務(wù)的同時,強化了數(shù)學與專業(yè)的有機結(jié)合,培養(yǎng)了學生將數(shù)學知識運用于自身專業(yè)中的能力。同時通過任務(wù)驅(qū)動,培養(yǎng)了學生自主探究式學習的能力;提升解決實際實際問題的能力。因為所設(shè)計的兩個任務(wù)具有愛國主義題材,學生在完成知識學習的同時,也極大的`激發(fā)了愛國主義精神。
在確定教學方法前,首先要求教師吃透教材,選擇恰當?shù)慕虒W方法和教學手段把知識傳授給學生。本節(jié)課主要采用任務(wù)驅(qū)動法、引導(dǎo)發(fā)現(xiàn)法、觀察法、歸納總結(jié)法、講練結(jié)合法。并采用電教手段使用多媒體輔助教學。
1、任務(wù)驅(qū)動法
教師精心設(shè)計與機械專業(yè)相關(guān)聯(lián)的二個任務(wù),作為貫穿整節(jié)課的主線,通過具體任務(wù)的完成,提高學生學習的興趣,激發(fā)求知欲,啟發(fā)學生對問題進行思考。在研究過程中,激發(fā)學生探索新知識的強烈欲望。提升解決實際總是的能力,并極大的激發(fā)了愛國主義精神。
2、引導(dǎo)發(fā)現(xiàn)法、觀察法
通過對勾股定理的觀察和三角形直角的相關(guān)變形,學生從中受啟發(fā),發(fā)現(xiàn)余弦定理,并證明它。
3、歸納總結(jié)法
學生通過前期的探索研究,自主歸納總結(jié)出余弦定理及其推論及判斷三角形形狀的相關(guān)規(guī)律。
4、講練結(jié)合法
講授充分發(fā)揮教師主導(dǎo)作用,引導(dǎo)學生自主學習。練習讓學生從多角度對所學定理進行認知,及時鞏固所學的知識,鍛煉了解決實際問題的能力,發(fā)揮出學生的主觀能動性,成為學習的主體。
學生學法主要有觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法。經(jīng)教師啟發(fā)、誘導(dǎo),學生通過觀察與分析去發(fā)現(xiàn)并證明余弦定理,培養(yǎng)歸納與猜想、抽象與概括等邏輯思維能力,訓練思維品質(zhì)。
(一)知識目標
1、使學生掌握余弦定理及其證明。
2、使學生初步掌握應(yīng)用余弦定理解斜三角形。
(二)能力目標
1、培養(yǎng)學生在本專業(yè)范圍內(nèi)熟練運用余弦定理解決實際問題的能力。
2、通過啟發(fā)、誘導(dǎo)學生發(fā)現(xiàn)和證明余弦定理的過程,培養(yǎng)學生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
3、通過對余弦定理的推導(dǎo),培養(yǎng)學生的知識遷移能力和建模意識,及合作學習的意識。
(三)德育目標
1、培養(yǎng)學生的愛國主義精神、及團結(jié)、協(xié)作精神。
2、通過三角函數(shù)、余弦定理、向量的數(shù)量積等知識的聯(lián)系理解事物之間普遍聯(lián)系與辯證統(tǒng)一。
教學重點是余弦定理及應(yīng)用余弦定理解斜三角形;
分析勾股定理的結(jié)構(gòu)特征,從而突破發(fā)現(xiàn)余弦定理,應(yīng)用余弦定理解斜三角形。
教學中注重突出重點、突破難點,從五個層次進行教學。
創(chuàng)設(shè)情境、任務(wù)驅(qū)動;
引導(dǎo)探究、發(fā)現(xiàn)定理;
完成任務(wù)、應(yīng)用遷移;
拓展升華、交流反思;
。
(一)導(dǎo)入
1、教師創(chuàng)設(shè)情境設(shè)置二個任務(wù),做為貫穿本課的主線和數(shù)學與專業(yè)有機結(jié)合的鈕帶,通過完成這二個任務(wù),達到掌握余弦定理并學會應(yīng)用的目標。
2、通過與直角三角形勾股定理引出余弦定理(快樂起點)經(jīng)教師啟發(fā)、誘導(dǎo),學生通過探索研究,合理猜想來發(fā)現(xiàn)余弦定理。
(二)新課
3、證明猜想,導(dǎo)出余弦定理及余弦定理的變形
經(jīng)過嚴密邏輯推理證明得出余弦定理,這一過程中,鍛煉了學生觀察、分析、歸納、猜想、抽象、概括等邏輯思維能力。
4、解決二個任務(wù)
5、操作演練,鞏固提高。
6、小結(jié):
通過學生口答方式小結(jié),讓學生強化記憶,分清重點,深化對余弦定理的理解。
7、作業(yè):
分層布置作業(yè),根據(jù)不同層次學生將作業(yè)分為必做題和選做題。使不同程度的學生都有所提高
板書是課堂教學重要部分,為再現(xiàn)知識體系,突出重點,將余弦定理知識體系展示在板書中,利于學生加深印象,理清思路。
在教學設(shè)計上,采用任務(wù)驅(qū)動,教師精心設(shè)計與機械專業(yè)相關(guān)聯(lián)的二個任務(wù),作為貫穿整節(jié)課的主線,通過具體任務(wù)的完成,即提高學生學習的興趣,又激發(fā)求知欲;知識點學習則循序漸進,符合學生的認知特點。經(jīng)教師啟發(fā)、誘導(dǎo),學生通過觀察、分析、發(fā)現(xiàn)、自主探究、小組協(xié)作等方法在獲取新知的同時,培養(yǎng)了歸納與猜想、抽象與概括等邏輯思維能力。
余弦定理新教材說課稿篇五
大家好,今天我向大家說課的題目是《余弦定理》。下面我將從以下幾個方面介紹我這堂課的教學設(shè)計。
本節(jié)知識是職業(yè)高中數(shù)學教材第五章第九節(jié)《解三角形》的內(nèi)容,與初中學習的勾股定理有密切的聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,在實際測量問題及航海問題中都有著廣泛的用,而且解三角形和三角函數(shù)聯(lián)系在高考當中也時常考一些解答題。并且在探索建立余弦定理時還用到向量法,坐標法等數(shù)學方法,同時還用到了數(shù)形結(jié)合,方程等數(shù)學思想。因此,余弦定理的知識非常重要。特別是在三角形中的求角問題中作用更大。做為職業(yè)高中的學生必須學好學透這節(jié)知識。
根據(jù)上述教材內(nèi)容分析,考慮到學生已有的認知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學目標:
①理解掌握余弦定理,能正確使用定理。
②培養(yǎng)學生教形結(jié)合分析問題的能力。
③培養(yǎng)學生嚴謹?shù)耐评硭季S和良好的審美能力。
教學重點:定理的探究及應(yīng)用。
教學難點:定理的。探究及理解。
對于職業(yè)高中的高一學生,雖然知識經(jīng)驗并不豐富,但他們的智利發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,所以我在授課時注重引導(dǎo)、啟發(fā)和探討以符合這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。
根據(jù)教材的內(nèi)容和編排的特點,為更有效地突出重點,突破難點,以學生的發(fā)展為本,遵照學生的認識規(guī)律,本講遵照以教師為主導(dǎo),以學生為主體,訓練為主線的指導(dǎo)思想,采用探究式課堂教學模式,即在教學過程中,在教師的啟發(fā)引導(dǎo)下,以學生獨立自主和合作交流為前提,以“余弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,讓學生的思維由問題開始,到發(fā)想、探究,定理的推導(dǎo),并逐步得到深化。突破重點的手段:抓住學生情感的興奮點,激發(fā)他們的興趣,鼓勵學生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學生原有的認知水平和所需的知識特點入手,教師在學生主體下給以適當?shù)奶崾竞椭笇?dǎo)。突破難點的方法:抓住學生的能力線,聯(lián)系方法與技能使學生較易證明余弦定理,另外通過例題和練習來突破難點,注重知識的形成過程,突出教學理念的創(chuàng)新。
指導(dǎo)學生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學知識應(yīng)用于對任意三角形性質(zhì)的'探究。讓學生在問題情景中學習,觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學生的主體地位,增強學生由特殊到一般的數(shù)學思維能力,形成了實事求是的科學態(tài)度,增強了鍥而不舍的求學精神。
第一:創(chuàng)設(shè)情景,大概用2分鐘。
第二:實踐探究,形成定理,大約用25分鐘。
第三:應(yīng)用定理,拓展反思,大約用13分鐘。
(一)創(chuàng)設(shè)情境,布疑激趣
“興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,從用正弦定理可解的兩類三角形出發(fā),揭示勾股定理特點,說明正弦定理解三角形不完備,還有用正弦定理不能直接求解的三角形,應(yīng)怎樣解決呢?需要我們繼續(xù)探究,引出課題。
(二)邏輯推理,證明猜想
提出問題,探究問題,形成定理,回顧分析,形成結(jié)論,再認識結(jié)論,總結(jié)用途。變形延伸,培養(yǎng)發(fā)散,對比特殊,認知推廣。落實定理,構(gòu)建定理應(yīng)用體系。
(三)歸納總結(jié),簡單應(yīng)用
1.讓學生用文字敘述余弦定理,引導(dǎo)學生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學美的享受。
2.回顧余弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。
(四)講解例題,鞏固定理
1、審題確定條件。
2、明確求解任務(wù)。
3、確定使用公式。
4、科學求解過程。
(五)課堂練習,提高鞏固
1。在△abc中,已知下列條件,解三角形。
(1)a=45°,c=30°,c=10cm
(2)a=60°,b=45°,c=20cm
2。在△abc中,已知下列條件,解三角形。
(1)a=20cm,b=11cm,b=30°
(2)c=54cm,b=39cm,c=115°
學生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。
(六)小結(jié)反思,提高認識
通過以上的研究過程,同學們主要學到了那些知識和方法?你對此有何體會?
1.用向量證明了余弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學思想。
2.兩種表達。
3.兩類問題。
(七)思維拓展,自主探究
利用余弦定理判斷三角形形狀,即余弦定理的推論。