等階和同階的區別
等階和同階的區別
“等階"是錯誤的寫法,正確的寫法應該是"等價”,等價無窮小等于同階無窮小,而同階無窮小不一定等于等價無窮小。同階無窮小含義是無窮小量,是極限為零的量。例如若x→0時,limf(X)=0,則稱f(X)是當x→0時的無窮小量,簡稱無窮小。同階無窮小量,其主要對于兩個無窮小量的比較而言,意思是兩種趨近于0的速度相仿。
等價無窮小含義
等價無窮小是無窮小之間的一種關系,指的是:在同一自變量的趨向過程中,若兩個無窮小之比的極限為1,則稱這兩個無窮小是等價的。無窮小等價關系刻畫的是兩個無窮小趨向于零的速度是相等的。
無窮小量
無窮小量是數學分析中的一個概念,在經典的微積分或數學分析中,無窮小量通常以函數、序列等形式出現。無窮小量即以數0為極限的變量,無限接近于0。確切地說,當自變量x無限接近x0(或x的絕對值無限增大)時,函數值f(x)與0無限接近,即f(x)→0(或f(x)=0),則稱f(x)為當x→x0(或x→∞)時的無窮小量。